The Future Global Earth Observing System: System Requirements and Architecture Peter Hildebrand, Mark Schoeberl, Warren Wiscombe, Mariann Albjerg NASA/Goddard Space Flight Center Martin Mlynczak NASA/Langley Research Center Carol Raymond, Robert Ferraro Jet Propulsion Laboratory David Petersen NASA/Ames Research Center Rick Miller NASA/Stennis Research Center **Timothy Miller** NASA/Marshall Space Flight Center Develop the outlook for the far-future Earth observing system: - provide a long-term vision - suggest major new observational goals required for prediction of full Earth system processes - evaluate feasibility of a full global Earth observing system - identify technical hurdles # Future Global Earth Observing System: Motivation ### The variability of Earth's environment links to life through: the availability of water, production of food, effects of atmospheric composition, ecosystem and human health, and human impacts and migration. As the human population grows, the links between the Earth environment and human needs and impacts also grow: the needs for quantitative prediction of the Earth system therefore increase. We must move beyond basic understandings of the Earth to a quantitative predictive capability for future changes of Earth's: atmosphere, oceans, biosphere and solid Earth. These predictions will enable informed societal decisions that will enhance the quality of life, economic sustainability, and global social stability. ### Linking Observations & Models The future Earth observation system will require a paradigm shift: - complete observation of the full Earth system - an international suite of Earth observation systems - all observations made at the appropriate: - precision and accuracy, and - spatial & temporal resolution for the processes being observed. - observations assimilated into a family of interacting models including - all major Earth system components: - atmosphere & oceans - biosphere - solid Earth - and linkages between components # Future Global Earth Observing System: Design Study ### We considered six Earth sciences topics: - The genesis and development of extreme weather - Seasonal climate change and predictability - Sea level change - Earthquake prediction - Availability of water - Biosphere climate interactions and human interactions Additional important topics are easily added. # Future Global Earth Observing System: Topic 1: Genesis and Development of Extreme Weather Table 2.2. Weather Forecasting Goals | Phenomenon (Today's
Capability) | Goals for 2010 | Vision for 2025 | |--|---|---| | 3-day forecast at 93% | 5-day forecast at > 90% | 7-10-day forecast at > 90% | | 3-day rainfall forecast not achievable | 3-day rainfall forecast routine | 7-day rainfall forecast routine | | Winter storms (13 hours advance) | Winter storms forecast 1 day in
advance; probabilistic guidance
to 5 days | Winter storm forecasts >3 days, with probabilistic guidance to 10 days | | 3-day severe local storm forecast with low-moderate confidence | 5-day severe local storm
forecasts with moderate
confidence | 7-day probabilistic
severe local storm
forecasts, with moderate
to high confidence | | Thunderstorm occurrence (convective initiation) to 16 min | Thunderstorm occurrence to 30 min | Thunderstorm
occurrence >2-3 hrs | | Tornado lead time 10 min | Tornado lead time 20 min | Tornado lead time 30
min | | Flash floods 47 min | Flash floods 1 hour | Flash floods >2-3 hours | | Hurricane landfall (125 nautical
miles (nm) at 2 days) | Hurricane landfall 100 nm at 2 days | Hurricane landfall 75 nm
at 3 days | | Hurricane intensity (16 knots) | Hurricane intensity 12 knots | Hurricane intensity 9
knots | | Air quality day by day | Air quality at 2 days | Air quality at 7-10 days | | Extreme Weather | | | | |--|-----------|--------------------------|--------------------------------------| | Measurements | Frequency | Horizontal
Resolution | Precision/
accuracy | | Tropospheric wind profiles (20 levels in troposphere) | 3 Hours | 5 km | 1 m/s per
horizontal
component | | Wind vectors within storm systems (20 levels in troposphere) | 1-3 Hours | 5-25 km | 3 m/s per
horizontal
component | | Temperature and water vapor profiles in
clear air (20 levels in troposphere) | 1-3 hours | 5 km | 1° C, T & Td | | Temperature and water vapor profiles
within storm systems (20 levels in
troposphere) | 1-3 Hours | 5-25 km | 1° C, T & Td | | Surface precipitation | Hourly | 5-25 km | 5-10 mm/h | | 3-D precipitation structure (20 levels in troposphere) | 3 Hours | 5-25 km | 5-10 mm/h | | Ocean mixed layer depth | Weekly | 10 km | 10% | # Future Global Earth Observing System: Topic 2: Seasonal Climate Change and Predictability | Today | 2015 | 2030 | |--|---|---| | Week to month short-term
climate predictions exceed
present capabilities. | Initial success in forecasting short-term climate. | Short-term climate
predictions routine with
90% success over week to
month time periods. | | First steps taken linking
weather and climate to
forecasts of flooding, crop
and disease. | Short-term climate
predictions link to forecasts
of adverse weather,
flooding, crop, disease
outbreaks. | Short term climate
predictions are sufficiently
accurate that societal
actions can be taken. | | First steps taken toward
understanding of causative
factors for el Nino
occurrence. | Past el Nino occurrences
can be reproduced, and
experimental forecasts are
routine. | 15-20 month El Nino
prediction | | Predictions of annual
rainfall on regional scales
are based on climatology
and persistence. | Useful predictions of
annual rainfall on regional
scales based on climate
predictions. | Routine global forecasts of
annual rainfall on regional
scales accurate enough for t
the needs of agriculture. | | First steps taken toward | Causative factors for short-
term climate variations | 10-year climate forecasts | **Table 2.1. Key Climate Measurement Goals** | Measurement | | | | |--|----------------------|--------------------------|------------------------| | Climate Measurements | Frequency | Horizontal
Resolution | Precision/
accuracy | | Ocean evaporation rate | Daily | 10 km | 5% | | Ocean mixed layer depth | Weekly | 10 km | 10% | | Sea Ice thickness | Monthly | 5km | 5cm | | Soil Moisture | Daily | < 1 km | 10% | | Soil properties (carbon stocks, nutrient
availability, hydrologic properties) | Monthly To
Weekly | < 1 km | NA | | Stream flow | Daily | NA | 10% | | Aerosol distribution and absorption
properties | Hourly | < 1 km | 10% | | Atmospheric ozone | Hourly | 1km (vertical) | 5% | | Carbon dioxide and methane | Hourly | 1km (horizontal) | 1% (column) | | Atmospheric gases | Hourly | 1km (H & V) | 1-10% | Topic 3: Sea Level Change | Today | 2015 | 2030 | |---|--|--| | Sea-level Change | | | | Large uncertainties in
several significant potential
contributors to sea level rise
(ice sheets, coastal change) | Ice sheet state, evolution and dynamics understood | | | Rudimentary knowledge of
short-term ocean volume
changes | Well-understood oceanic
expansion term tied to
short-term climate
prediction models | Accurate 10-yr and longer regional sea level | | Regional variability poorly understood | Variable coastal response to
sea level change understood | prediction, including
impacts on coastal erosion,
coastal ecosystems and
fresh water availability | | Rudimentary knowledge of
adaptability of coastal
ecosystems to rising sea
level | Impact of sea level change
on coastal region
habitability coming into
focus | | | Sea Level Measurements | Frequency | Horizontal | Precision/ | |---|-----------|------------------|-------------------| | | 1 | Resolution | accuracy | | Ocean/Ice Mass Redistributions (gravity | Monthly | 100s-1000s km | 0.1 mm/yr sea | | change) | | (scale of | level rise | | | | drainage basin) | equivalent | | Bathymetry | Once | 5 km | 10% | | Ocean mixed layer depth | Weekly | 10 km | 10% | | Coastal zone topography | Monthly | 2-5 m pixels | <10 cm (height) | | Ice Sheet Topographic Change | < 1 Year | 1-10 km (ice | 1 cm (height) | | | | streams - ice | | | | | sheet) | | | Ice motion (dynamics) | Monthly | 100 m | 1 m/yr (rate) | | Ice Sheet and Bed Characteristics | 10 Years | 10 – 100 km | Bed topography to | | | | | <10 m | | Crustal Deformation (uplift/subsidence) | Daily To | 10 m | 1 cm (range) | | | Weekly | | 0.5 mm/yr (rate) | | | | | on annual basis | | Soil Moisture | Daily | < 1 km | 10% | | Snow Pack | Weekly | < 1 km | 0.1 mm/yr sea | | | | | level rise | | | | | equivalent | | Reservoir and Aquifer Impoundment | Monthly | Scale of storage | 0.1 mm/yr sea | | | | basin | level rise | | | | | equivalent | Topic 4: Earthquake Prediction | Today | 2015 | 2030 | | |---|--|--|--| | 30-yr probabilistic earthquake assessments. | Experimental 5-yr earthquake forecasts. | Monthly earthquake hazard assessments at scale of major fault systems. | | | Earthquake physics poorly understood | Models of earthquake
physics yielding reasonable
success in representing
observed fault system
interactions. | Time-dependent models of
crustal deformation due to
tectonic loading and
hydrology. | | | Knowledge of space-time
spectrum of crustal
deformation expanding | Aseismic and transient
strain budget coming into
focus | Full-spectrum of deformation understood | | | Daily to weekly volcanic activity warnings | Global inventory and
warnings of active
volcanoes | 30-60 day volcanic eruption warnings | | | Magma dynamics models in development. | Evaluation and validation of magma dynamics models to predict eruptions | Impact of potential
eruptions on atmospheric
composition factored into
climate models | | | Measurements | Frequency | Horizontal
Resolution | Precision/
accuracy | |--|--------------------|--------------------------|---| | Crustal Deformation | Daily To
Weekly | 1-10 m | 5 mm
instantaneous,
1 mm/yr (rate
over 10 yrs)
accuracy | | Crustal Mass Redistributions
(gravity change) | Weekly | 50-100 km | 0.1 milligal
accuracy | | Subsurface sounding | Weekly | 100 m/ 10 m
depth | 5% saturation | Topic 5: Availability of Water | Today | 2015 | 2030 | |--|---|---| | Understanding of the role of clouds and precipitation in weather and climate. | Credible progress towards
representation and
forecasting of clouds in
weather and climate
models. | Routine predictions of clouds and precipitation in weather and climate models. | | Prediction of land surface
state—snow, soil moisture,
surface water, ET—at a
micro level. | Land surface state can be reliably predicted independently of the weather and climate variability. | Land surface influence on
the climate and biosphere
systems can be predicted. | | Components of the water cycle understood, but water budget not accurately closed. | Capability for prediction of water cycle trends on regional and global scales. | Can routinely predict water cycle variability and extreme events on regional and global scales. | | 100 | | |--------------|--| | | DAMC | | | BAMS DECOMPOSED | | | THE DROUGHT HONITOR | | | As Integrated Reposals to Water Supus Assessment | | | | | 22 July 2003 | | | and girodi scales. | | | | |--|----------------------|---|---| | Measurements | Frequency | Spatial
Resolution | Precision | | Soil Moisture | Daily | < 1 km | 10% | | Precipitation | Hourly | 5-25 km | 5-10 mm/h | | Stream flow | Daily | NA | 10% | | Sea Ice thickness | Monthly | 5km | 5cm | | Soil properties (carbon stocks, nutrient
availability, hydrologic properties) | Monthly to
Weekly | < 1 km | NA | | Ocean evaporation rate | Daily | 10 km | 5% | | Reservoir and Aquifer Impoundment | Monthly | Scale of storage
basin | 0.1 mm/yr sea
level rise
equivalent | | Ice sheet elevation | Weekly | < 1 km | 1% | | Snow Pack | Weekly | < 1 km | 0.1 mm/yr sea
level rise
equivalent | | Ice Sheet Topographic Change | < 1 Year | 1-10 km (ice
streams – ice
sheet) | 1 cm (height) | # Future Global Earth Observing System: Topic 6: Biosphere, Climate and Human Interactions | Biosphere-climate
Interactions | | | |--|--|--| | Today | 2015 | 2030 | | Observations allow relating net primary production with carbon balance. | Carbon sources and sinks
for North America are
quantified well enough to
allow carbon management
decisions. | Prediction of global, high
resolution, monthly carbon
exchange by oceans, coastal
zone, and terrestrial
biosphere | | Accurate characterization of
annual biogeochemical
cycling and biospheric
processes in ocean and
terrestrial models based on
remote sensing data. | Understand the effects of
land use recovery on
carbon balance, including
explicit understanding of
biomass, soils, and coastal
zone | Capability to understand
and predict the natural
regulatory controls on
biosphere processes. | | Teleconnections between
climate variability and
ecosystem response
understood on a statistical
basis. | Capability to forecast
ecosystem response to
climate and weather
variability on interannual
and longer time scales. | Capacity to forecast
ecosystem response to
human influences on
biosphere-atmosphere
exchanges. | | Capability for coarse
resolution, global net
primary production
modeling. | Capability for ecosystem-
specific, carbon
management modeling and
forecasting. | Capability to model fine
space and time scales of
biosphere response to
climate variation (adequate
for public applications) | | Table 2.7. Measurement Goals for the Biosphere on Land and Sea Biosphere | | | | | | |---|----------------------|--------------------------|------------------------|--|--| | Measurements | Frequency | Horizontal
Resolution | Precision/
accuracy | | | | Mixed layer depth, coastal zone | Weekly | 10-100 m | 10% | | | | Ocean Nutrient fields (N, Si, Fe), aerosol
deposition, functional groups | Weekly | 10 km | 30 % | | | | Ocean Colored dissolved organic matter
Chlorophyll and other pigments
Functional groups
Bathymetry and bottom reflectance
Nutrient concentration (N, Si, Fe, P) | Daily-
Weekly | 100 m | 10% | | | | Ocean Physiological state (fluorescence) | Daily | 100 m | 20% | | | | Bathymetry | Daily-
Weekly | 100 m | 10% | | | | Phenological state (leaf out, senescence) | Diurnally | 1 km | Less than one
day | | | | Biochemical composition of plant canopies
(N, lignin, pigments, chlorophylls, etc.)
Responses to multiple stressors (long-term) | Weekly | 100-200 m | 25% | | | | Fire properties (energy release rates, rate of
spread, gas/aerosol loading, soil heating) | Daily | 100 m | 20% | | | | Standing biomass over time | Monthly-
Annual | 100 m | 10% | | | | Vegetation structure, successional state,
primary & secondary vegetation condition | Monthly | 100 m | 20% | | | | Soil properties (carbon stocks, nutrient
availability, hydrologic properties) | Monthly
To Weekly | < 1 km | NA | | | | Aerosol distribution and absorption properties | Hourly | < 1 km | 10% | | | | Atmospheric ozone | Hourly | 1km (vertical) | 5% | | | | Carbon dioxide and methane | Hourly | 1km
(horizontal) | 1% (column) | | | | Atmospheric gases | Hourly | 1km (H & V) | 1-10% | | | ## Future Global Earth Observing System: How realistic is this future vision? - Current Earthobserving satellites: - GEO + LEOoperational satellitesfrom US & othernations - a multitude of research satellites SOURCE SO How many satellites & what do they measure? How are data accessed? #### Sensor Web - –links data to computational nodes - –synthesizes information for applications 22 July 2003 2 # Future Global Earth Observing System: Review the Observation Goals Orbits for each measurement can be selected based on the requirements for: - frequency of ____ observation - spatial sampling - observational technologies Temporal and spatial sampling requirements are set by the characteristic scales of the phenomena | Measurement | Frequency | Horizontal
Resolution | Precision/accuracy | Predictive
Goal | |---|---------------------|-----------------------------------|---|--------------------| | Ocean evaporation rate | Daily | 10 km | 5% | c,w | | Ocean mixed layer depth | Weekly | 10 km | 10% | C.EW.S | | Ocean mixed layer depth, coastal zone | Weekly | 10-100 m | 10% | В | | Ocean/Ice Mass Redistributions (gravity change) | Monthly | 100s-1000s km
(drainage basin) | 0.1 mm/yr sea level rise
equivalent | S | | Aero sol distribution and absorption properties | Hourly | < 1km | 10% | C,B | | Atmospheric ozone | Hourly | lkm (V) | 5% | C,B | | Carbon dio xide and methane | Hourly | lkm (H) | 1% (column) | C,B | | Atmospheric gases | Hourly | lkm(H&V) | 1-10% | C,B | | Tropospheric wind profiles (20 levels) | 3 Hours | 5 km | 1 m/s | E | | Wind vectors within storm systems (20 levels) | 1-3 Hours | 5-25 km | 3 m/s | E | | Temperature and water vapor profiles in clear air (20 levels) | 1-3 hours | 5 km | 1° C, T & Td | E | | Temperature and water vapor profiles within storms (20 levels) | 1-3 Hours | 5-25 km | 1°C,T&Td | E | | | Hourly | 5-25 km | 5-10 mm/h | E,W | | 3-D precipitation structure (20 levels in troposphere) | 3 Hours | 5-25 km | 5-10 mm/h | E | | Sea Ice thickness | Monthly | 5km | 5cm | c,w | | Soil Moisture | Daily | < 1km | 10% | C,S,W | | Soil properties (carbon stocks, nutrient availability, hydrogen
properties) | Monthly -
Weekly | < 1km | NA | C,W,B | | Stre and | Daily | NA | 10% | c,w | | Bathymetry | Daily-Weekly | 100 m | 10% | В | | Coastal zone topography | Monthly | 2-5 mpixels | <10 cm | S | | Ice Sheet Topost Luc Change | < l Year | 1-10 km (ire
streams & sheets) | l cm (height) | s,w | | Ic Lucet elevation | www.kly | < 1km | 1% | W | | Ice motion (dynamics)
Ice Sheet and Bed Characteristics | Monthly
Yearly | 100 m
10 – 100 km | 1 m/yr (rate)
Bedtopography to <10 m | S
S | | Crustal Deformation (uplift/subsidence) | Daily To
Weekly | 10 m | 1 cm (range); 0.5 mm/yr
(rate) on amualbasis | S,E | | Crustal Mass Redistributions (gravity change) | Weekly | 50-100 km | 0.1 milligal accuracy | E | | Suosas sisteme sounding | Weekly | 100 m/ 10 m depth | 5% saturation | E | | Snow Pack | Weekly | < 1km | 0.1 mm/yr sea level rise
equivalent | s,w | | Reservoir and Aquifer Impoundment | A. he | Scale of storage | 0.1 mm/yr sea kwel rise | s,w | | Ocean Nutrient fields (N, Si, Fe), aerosol deposition, functional | Weekly | basin
10 km | equivalent
30 % | В | | groups | | | | | | Ocean Colored dissolved organic matter, Chlorophyll and other
pigments, Functional groups, Bathymetry and bottom | Daily-Weekly | 100 m | 10% | В | | reflectance, Nutrient concentration (N, Si, Fe, P) Ocean Physiological state (fluorescence) | Daily | 100 m | 20% | В | | Phenological state (leaf out, senescence) | Diumally | 1 km | Less than one day | В | | Fischemical composition of plant canopies (N, lignin, pigments, chlorophylis, etc.) Responses to multiple stressors (long-term) | Weekly | 100-200 m | 25% | В | | (long-term) Fire properties (energy release rates, rate of spread, gas/aerosol loading, so ilhe sting) | Daily | 100 m | 20% | В | | loading, so il ne simg)
Standing biomass over time | Monthly Annual | 100 m | 10% | В | Predictive goal categories: - Climate - ExtremeWeather - Sea Level - Earthquake - Water - Biosphere ### Future Global Earth Observing System: Orbits, Constellations, & Instruments #### Special LEO: - 4-6 satellites - 3 weekly scales - longer wavelength instruments #### LEO orbits: 8-10 satellites provide: - multi-hour « multi-day scales - longer wavelength instruments # Future Global Earth Observing System: Review the Observation Goals | Measurement | Frequency | Horizontal
Resolution | Precision/accuracy | Predictiv
Goal | |---|-------------------|---|---|-------------------| | Ocean evaporation rate | Daily | 10 km | 5% | c,w | | Ocean mixed layer depth | Weekly | 10 km | 10% | C.EW. | | Ocean mixed layer depth, coastal zone | Weekly | 10-100 m | 10% | В | | Ocean/Ice Mass Redistributions (gravity change) | Monthly | 100s-1000s km | 0.1 mm/yr sea level rise
equivalent | S | | Aero sol di | | | 10% | C,B | | A. | | | | C,B | | | | | rm) | C,B | | | | | | C,B | | | | | | E | | | | | | E | | | | | Td | E | | | | | 1 & Td | E | | Surface p | | | 5-10 mm/h | E,W | | 3-D precipitation success | | | 5-10 mm/h | E | | Sea Ice thickness | monuny | 5km | 5cm | c,w | | Soil Moisture | Daily | < 1km | 10% | C,S,W | | Soil properties (carbon stocks, nutrient availability, hyd wog.c | Monthly - | < 1 km | NA | C,W,B | | properties) | Weekly | -0439 | | Commence. | | Stream flow | Daily | NA | 10% | c,w | | Bathymetry | Daily-Weekly | 100 m | 10% | В | | Coastal zone topography | Monthly | 2-5 mpixels | <10 cm | S | | Ice Sheet Topostuc Change | < 1 Year | 1-10 km (ire
streams & sheets) | 1 cm (height) | s,w | | In anset elevation | Weekly | < 1km | 1% | w | | | 31.25000000 | 100 m | DOPONE II | S | | Ice motion (dynamics)
Ice Sheet and Bed Characteristics | Monthly | 100 m
10 – 100 km | 1 m/yr (rate) | S | | | Yearly | 130000000000000000000000000000000000000 | Bed top ography to <10 m | COCCULTURE. | | Crustal Deformation (uplift/subsidence) | Daily To | 10 m | 1 cm (range); 0.5 mm/yr | S,E | | Crustal Mass Redistributions (gravity change) | Weekly
Weekly | 50-100 km | (rate) on annual basis
0.1 milligal accuracy | E | | Subsume sounding | Weekly | 100 m/ 10 m depth | 5% saturation | E | | Snow Pack | Weekly | < 1 km | 0.1 mm/yr sea level rise | s,w | | | Trecally . | | equivalent | ,,,,, | | Reservoir and Aquifer Impoundment | elche. | Scale of storage | 0.1 mm/yr sea level rise | s,w | | | | basin | e quiva lent | | | Ocean Nutrient fields (N, Si, Fe), aerosol deposition, functional | Weekly | 10 km | 30 % | В | | து வழ் 6 | - Carlo S. Carlo | | | | | Ocean Colored dissolved organic matter, Chlorophyll and other | Daily-Weekly | 100 m | 10% | В | | pigments, Functional groups, Bathymetry and bottom | | | | 11,000 | | reflectance, Nutrient concentration (N, Si, Fe, P) | | 100 | 200 | - | | Ocean Physiological state (fluorescence) | Daily | 100 m | 20% | В | | Phenological state (leaf out, senescence) Biochemical composition of plant canopies (N. lignin. | Diumally | 1 km | Less than one day | В | | Biochemical composition of plant canopies (N, lightn, pigments, chlorophylls, etc.) Responses to multiple stressors (long-term) | Weekly | 100-200 m | 25% | В | | Fire properties (energy release rates, rate of spread, gas/aerosol | Daily | 100 m | 20% | В | | loading, so il he ating) | 71:500 3 4 | 00300900 | 36.42) | 35.76 | | | Monthly Annual | 100 m | 10% | В | Temporal and spatial sampling requirements are set by the characteristic scales of the phenomena ## Future Global Earth Observing System Communication, Computation & Delivery of Data ### Data requirements for - ~1 hourly, 0.1 km resolution with: - 10 variables - 10 measurements / variable - 20 levels in atmosphere - $\sim 10^{12} |bauch$ ### Ability of recipient to ingest the data: • for govt. function, industry, science, public ~ equivalent to present workstations or ~ 106 baud - either binary (yes/no) - or between choices ### **Systems of Planet Earth** #### Earth Radiation Environment - Earth Magnetic Field - Orbit Dynamics - Solar Cycle / Events #### Atmosphere - Ocean Dynamics - · Ocean Heat Transport - · Seasonal Variability - Storm Systems #### Climate - Aerosols - · Greenhouse Gasses - · Hydrological Cycle #### **Biosphere** - Availability of Water - · Ecosystem Health - · Quality of Life #### Solid Earth - Earthquakes - Sea Level - Volcanoes